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By H. Ludwieg

SWARY

It is shown tHat at a smooth wall in a turbulent boundary layer
the velocity profile next to the wall is dependent, aside from the
material constants of the flowing medium, only on the shearing stress
transmitted to the wall, even with pressure rise or with pressure drop.
Consequently, the heat transfer of a small element that is built into the
wall.and has a higher temperature than that of the flowing medium is a
measure of the wall shearing stress. Theoretical considerations indi-
cate that the wall shearing stress of the boundsry layer can be defined
by means of a heat-transfer measurement with an instrument mounted in
the wall. Such an instrument is described. The calibration curve and
its directional sensitivity curve are indicated. It permits the determi-
nation of the wall shearing stress in magnitude and direction.

I. INTRODUCTION
.

The technique in aerodynamic measurements frequently involves the
problem of defining the wall shearing stress of a turbulent boundary
layer, since it is of decisive importance for the entire flow process.
But its measurement presents great difficulties. Direct measurement by
means of a balance, as carried out by Schultz-Grunow (reference 1), is
feasible only in special cases, because of the large amount of instru-
mental equipment required. In general, it is restricted to flows with
approximately constant pressure in the zone of the experimental plate,
since, otherwise, uncontrollable slot flows occqr, which introduce
considerable measuring errors. Another method, employed up to now,
consists in exploring the entire boundary layer with a fine pitot tube,
and then computing the wall shearing stress by the momentum method. But
‘thismethod calls for considerable expenditure of labor, since the flow

P velocity must be determined in magnitude and direction over a wide range.

. *’lEinGerat zur Messung der Wandschubspannung turbulenter
Reibungsschichten.1’
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Moreover, the boundary layers are SO thin in many cases that the
.

-w.

experimental determination of the velocity distribution in the boundary
layer cannot be effected at all. The accuracy of measurement of this
method is very poor for complicated flow processes, since the test
value (the wall shearing stress) must be determined by differentiation

—

of slightly variable quantities (loss of momentum of boundary layer),
which, as is known, leads to inaccurate results, even when the quantities
to be differentiated are themselves measured comparatively correct.

Another method has been citedby Fage”and Fallmer (reference 2).
The special feature of this method is the pressure orifice at the point
of the wall where the shearing stress is to be measured.” Approximately

.

1/20 millimeter above this orifice is a sharp knife e!lge. The portion
of the velocity near the wall (t@? laminar sublayer) is then dammed up
between knife edge and wall. we pressure rise helm the knife edge
with respect to the undisturbed static pressure gives then a measure for

—-—

the wall shearing stress, since the velocity distribution in wall proximity
is definitely correlated to the shearing stress. However, in view of the
difficulty in handling and due to the extremely sensitive test probe, this
method has not made much headway. —

According to the method described in the present report the shearing-
stress measurement is reduced to a heat-transfer measurement.

II. PHYSICAL PRINCIPLES OF THE SkEARING-STRESS ~
*

The part of the velocity profile adjacent to the wall, whether for
the turbulent boundary layers on a smooth, flat plate without pressure . -.
gradients in flow direction, or for turbulent boundary layers in smooth
pipes or channels with constant section, can be represented in the

.-.

following form (reference 3).
.—

u

()
+

p= = f(y*) (1)

f being the same function in all cases; u, the flow velocity; y, the
wall distance; v, the kinematic viscosity; u*, the so-called shearing-

C7stress velocity defined by the equation u* = Tw p; ‘“Tw, the shearing

-W* is abbreviatedstress transferred to the wall; and p, the density; ~

to y*. This relation, derived on the basis of a dimensional analysis, is
very satisfactorily confirmed by measurements (reference 3). For y*
values exceeding 50, the shearing stress is practically completely trans-

~-

ferred by the turbulent exchange, while the contribution of the internal

.
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*- friction to the shearing-stress transfer is no longer worth mentioning.

Equation (1) assumes here the form

u—=alog~+bU* (2)

known as the logarithmic velocity law, with a and b as universal
constants.

In direct proximity of the wall, that is, for very small P Values$
the turbulent exchsmge is voided by the presence of the wall, and the

.

.

shearing stress is then transmitted solely by the internal
1

the flowing medium. From

friction and the boundary
that for these small. y+

-L

the equation T = P$ defining

condition u = O for y=O,it
values, equation (1) assumes the

u—=*=Y*
u*

friction of

the internal

then follows,
following form

(3)

This mrelv laminar layer next to the wall is called the laminar
sublayer of the turbulent boundary layer.

Between these two parts of the boundary layer, there is also a
corresponding transition zone, where the shearing stress is transferred
in part by turbulent exchange, and in psrt by internal friction.

With a view to ascertaining the thickness of this laminar sublayer
and the variation of the ~ction h equation (1), in the transition
zone, Reichardt (reference 4) has made a number of velocity-profile
measurements extending into the laminar suhlayer. However, since this
sublayer is, as a rule} very thins he W- forced to make the measure-
ments at very small u* values, which means at small flow velocities
whkre the sublayer was thick enough for exploration with fine hot wires
and pitot tubes. The measurements indicated that the laminar law}
equation (3), is rigorously valid only up to y* values of from about
1.5 to 2. At y+ = 5 the velocity differs by about 10 percent and
at~= 10 by about 25 percent from the law given by equation (3).

lT = shearing stressj v = viscosity.
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All the existing measurements and theoretical investigations,which -
show that the velocity distribution in wall proximity can be represented
in the form of equation (3), refer to the two specific cases:

-.
developed

turbulent flow in a pipe or channel, and flow past a wall at constant
speed outside of the boundary layer,(constant pressure in direction of
flow). But, for the shearing-stressmeasurements under consideration,
the velocity distribution close to the wall in general cases, that is,
in flows With considerable pressure rise or drop in flow direction, is
exactly the point of greatest interest. Still, it can be assumed that
equation (1) is approximately valid here also for points nearest to the
wall. This is readily proved for the laminar sublayer. It is true that
the shearing stress T at a short distance from the wall differs a little

-.

from the wall.shearing stress Tw, since for points near the wall Prandtlts

~ = ~. But, for the normallygeneral boundary-layer equations give

appearing pressure increases and decreases and the very small thickness
of this sublayer, this increase smd decrease of the shearing stress withfn

..

the lsminar sublayer is so small that 7 =,Tw = constant still is closely

aprroxhate and equations (1) ad (3) remti applicable. But it is also
anticipated that the transition zone from the purely laminar to the
turbulent part is closely approximated by equation (1) because this layer,
too, is still so thin that the variation in shearing stress due to the
pressure gradient is trifling. Even the state of flow departing substan-
tially frcmthe law, equation (1)~ at greater wall dist~ces~ is not .—

indicative of an.effect in wall proximity; for the velocity profile in
plate flow without pressure rise and that for flow in pipes or channels .

are markedly different at great wall distances and still are”reproducLed
very satisfactorily in wall proximity by equation (l). The same holds
true in rough approximation for the adjoining purely turbulent zone in

.

wall proximity.

So these considerations show that the same general speed law as for
constant pressure (equation (l)) is applicable also to boundary layers

—

with pressure gradients in flow direction in wall proximity, although it
is to be expected that the departures from this law start at so much
smaller wall distance as the pressure gradient is greater.

A certain expertiental proof of the validity of equation (1) can
be found in Wieghardtts measurements on boundary layers with different
pressure gradients (reference 5). For it is shown that the velocity u

near the wall is approximately proportional to #/~9~ for all velocity
profiles. Now the general law, equation (1), which applies at constant

.-

pressure, can be approximated, as is known by a power formila

()
l/n

u—= c-
U* v

(4)
.

.
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(reference 3), where n and C are constants still somewhat dependent
on the y* range, in which this general law, equation (1), is to be
approximated as closely as possible. In the range involved in Wieghardt’s
measurements, n is a number of around 7 to 8; hence it may be assumed
that the law, equation (1), in this small adJacent zone is applicable also
with pressure rise or pressure drop. But this finding is not conclusive,
since in Wieghardtts measurement the factor u* is not known, so that in
equation (4) the power of y can be proved but not the numerical factor ‘C.
At this point reference is made to a report by H. Ludwieg and W. Tillmann,
shortly to be published, in which it will be shown that, for the pressure
gradients involved in practice, the general speed law, equation (4) Snd
equation (1), respectively, reproduces the velocity distribution rather
closely and up to comparatively great wall distances.

With validity of the general velocity law, a sheari%-stress measur-
ementwill be a simple matterj in theory. It simply calls for a measurement
of velocity u at any distance y followed by insertion of the two values
in the equation (1) resolved with respect to u*. The result is u* and
with it the wall shearing stress Tw. The only drawback is that the

velocity must be measmed at very short wall distamce (at best, within the
lsminar sublayer) because it is the only place where the general velocity
law is still applicable with the necessary exactness: Considering the
fact that the thiclmess of the laminar sublayer in air currents with the
usual velocities is, as a rul-e~OtiY a few h~~edths to tenths of a
millimeter, it is readily apparent that the customary mechanical aids
(pitot tube, hot wire) are useless for such measurements. An attempt was
therefore,made to assess the velocity distribution in direct wall proximity
by means of a heat–transfer measurement. The method is explained by way of
the diagrammatic drawing, figure 1. A fluid or a gas with turbulent boundary
layer flows past a solid wall C; its velocity profile is shown at the left-
hand side. The sublayer (straight streamlines in fig. 1) is lsminar in wall
proximity, the outer part of the flow is turbulent (wavy stream lines). A
small, heat conducting metal block A iS inserted in the solid w~l C
(considered heat resistant, for the present). ‘A small electric heater
raises the temperature of the block A above that of the fl~id which is to
have the same temperature as the wall C. Starting from the forward edge
of block A, a warm boundary layer (layer with higher temperature) is built
up within the boundary-layer flowl indicated by crosshatchi~ in figure 1:
By making the length of block A short enough, the thickness of,the warm
boundary layer can be kept small. The smount of heat transferred to the
fluid is then defined, by the temperature of the block A, by the known
material constants of the flowing medium, and by the velocity distribution
in the immediate proximity of the wall. But, by equation (1), this
velocity distribution is, aside from the material constants, only affected
by the shearing stress velocity u*, that is by the wall shearing stress Tw,

so that, with given material constants and temperature of block A, a unique
correlation of shearing stress and heat transfer of the block is obtained.

‘!l?hispaper is available as NACA TM1285.
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This relationship can then be determined by a calibration measurement with \ - ‘
known shearing stresses. In the following, this relationship is investigated
in the light of the differential equation of the heat-transfer.

111. THEORETICAL CONSIDERATIONS ON THE RELATIONSHIP BETWEEN

SHEARING STRESS AND HEAT TRANSFER

The first problem is to establish, in the light of the differential
equation and the boundary conditions, how the relationship between shearing
stress and heat transfer can be expressed nondimensionally with the most
general validity.

The solid wall in figure 1, regarded as absolutely heat resistant,
is to coincide with the x axis. The heated block A of constant temper-
ature Tw is to reach from x = O to x = Z. The fluid, so far as it
is unaffected by the heating element, has a temperature T@. The coor-
dinate at right angle to the wall is denoted with y.

To simplify matters, it is assumed that the flow field is not affected
at alJ by the temperature field. Theoretically, this can always be obtained
with any degree of accuracy by choosing (Tw -Tm) small enough.

The differential equation for the heat transfer reads then

Pcp(y gradT) - div (Xeff grad T) = O (5)

where w is the vector of the flow velocity with the components u and
V, and ‘Cp the specific heat at constaht pressure. The thermal conduc-
tivity is expressed here by em effective value ‘eff in view of the

apparent increase in thermal conductivity as”a result of the turbulent
exchange outside of the laminar sublayer. In consequence, Aeff is

affectedly y. In the immediate vicinity of the wall, where the
entire heat-transfer problem takes place, the general law (equation (l))
can be applied to w. Thus

.—

.

.

—

—

u= u*f(y+)

V=o
(6)

.

.
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The velocity component v at right angle to the wall is equated
to zero in the immediate vicinity of the wall, because Tw and u*,

and therewith the velocity profile itself, vary very slowly. From
dimensional considerations, it follows that the effective coefficient
of heat conduction ‘eff must be representable in the following form

Aeff = MY*,=) (7)

where k is the normal heat conductivity factor, pr=~.~, the

Prandtl number, and g, an unknown function. Introducing equation (6)
and equation (7) in equation (5) and replacing x and y by the
variables

_—E - ‘pa

gives

with the boundsry conditions

T = Tm

with, for abbreviation, w=;.
m

forq=O

forT=O

forq=m

(8)

(9)

(lo)

From the homogeneity of this differential equation
the coefficients, and the form of the boundary conditions, it follows

in T, the form of
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that the temperature field can be represented in the following form:

T
‘Tm+kw-T4h(~~~~pr~~)” (11)

Since directly at the wall the heat transfer is solely by conduction,
the heat volume Q transferred in unit time is

b is the width of

Now, when the

and the

Nusselt

the element,

mean transfer

corresponding

a.=

k, a function not further identified.

factor &

*

(13)

dimensionless heat-transfer factor, the so-called

number N= = %, ~e introduced
A

Ku = k(i,Pr) (14)

Thus it is seen that, on the assumption of a constant Pran#tl

()

Z%v
l/2

number, a unique relationship exists between quantity ~ = — . —
U*2

fla Pa
and the Nusselt number ~u = ~. The Nusselt number R is defined by

a measurement of Q and (Tw-T&@then ‘) ‘* and Tw canbe
computed, when the function k is go=. Theoretically, this function k,
that is, the relationship between Nu, 1, and Pr, could be determined
by integration of equation (9); it would merely involve some assumptions
identifying the variation of the function g(y*,Pr). In view of the
uncertainty of this assumption and the fact that in the construction of
a measuring element the ideal forms serving as a basis of the calcula-
tions cannot be maintained, this complicated calculation process is
not worth while. The connection between ~u and ~ is much better
obtained by the calibration measurement, which does not have to be made

-
.

.

.
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the same flowing medium for which
later, although both medium must

the measuring
have the same

9

element is to be
Prandtl number.

If the lengths Z and Z are chosen small enough so that the
boundary l~yer remains completely within the lan&ar sublayer, the

theoretical connections are simplified substantially. According to

()

T
equation (3), the expression f — = ~ can be then put in equa-

m
tion (9) which gives, since

Hence by equation (9)

with the corresponding

T = Tw

the turbulent exchange is also absent,

()e&Pr =1”

()& -&Pr

alJ “=0

()a%,a?r=oT@–_
a~ atz %2

boundary conditions

aTq=o

(15)

(16)

forq=O

forq=O (17)

T = Tm forq=m

Thus ~ (dimensionless depth of elemen~) remains the sole parameter
of the solution in the ~, T system. At Z values not too small, the
thickness of the warm boundary layer is small compared to its length.
The entire $orward portion of this layer up to ~
those for Z is then entirely unaffectedly 7.,
of (16) for the boundary conditions

T=TW

gives, at the
conditions.

for-ms~~O and ~=o

same the, the correct solution for

values approaching
Therefore the solution

the correct boundary
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boundary-layer theory
hence

Leveque (reference 6)
differential equation

NACA TM 1284

great ~ values, the usual omission of the

#Tin the differential equation leaves — &*
h~2 ‘< ~q2)

already transformed
by substitution of

into th< ordinary differential equation

362 !xJ + d% _
$–

with the boundary conditions

and solved this partial

o

T=TW forfi=O

T=Tm for~=~

Transferred and resolved, the temperature field is

with

(18)

.

‘!
L -.

(19)

—

(20)

(21)

—

—

—

.

(22)

.—

the temperature depends solely on the parameter ~, or,
the temperature profiles, the thickness of which increases Y

similar in sections ~ = const. Computing the heat
.
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vol~e Q transferred from it, then the Nusselt number ~u as function
of 1 gives

or, when ~ is replaced again by the original quantities,

(23)

(24)

The Nusselt number NY and the heat–transfer factor fi are in this
2 to the third root of the wall shearing stress. Oncase, proportional

assuming that the warm boun_darylayer remains within the laminar sub-
layer, the dependence of Nu on the Prandtl number cancels out
altogether.

Tw_T
In figure 2, the temperature field

mm
= F(q) is plotted

against ~ according to equation (22). Defining the wall distance at
which the tangent to the temperature Irofile in point T = O and the
asymptote to the
thermal boundary

The thickness
relations

temperature-profile meet (fig. 2) as thickness of the
layer, the latter follows as

of the laminar sublayer is given by the following

(25)

(26)

where C is a constant, which, depending upon the demands made on the
laminarity, rsmges between 1.5 and 10. BY equations (25) and (26) the

ratio ~ follows as

(27)

2(Derived independently by Reichardt.)
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‘w ‘L .
where Cf‘ = — is the local coefficient of friction, that is, the

LJ2U2
wall shearing ‘stress TV made dimensionless with the dynamic pressure
outside of the boundary layer. The factor Rez is the Reynolds number
formed by Z, the velocity U outside of the boundary layer sad the
kinematic viscosity V, and Pr the Prandtl number. Since cf’ varies

rather little as a rule, (ordinarily ranging from 0.002 to 0.003,

()
cf 1/6
T

is practically a constant.

On entering the material constants for air, the velocities usually
occurring in air and the practical element length Z of about 1 mm,
into equation (27), it is seen that the thermal boundary layer generally
extends a little beyond the laminar sublayer. Nevertheless, it is antici-
pated that with the use of small Z,”the law, equations (23) and (24),
still reproduces the relationship between heat tramsfer and shearing
stress approximately because the change in heat transfer due to turbulence
occurs only in the outer zones of the thermal boundary layer, where the
temperature gradient is small in any case. Furthermore, two effects, —

compensating in part, occur in this case. The turbulent exchange is
accompanied by a greater Meat transfer and the exchange of momentum by
a decrease in the mean flow velocity, which is equivalent to a reduction
in heat transfer.

Incidentally, it should be borne in mind that this dipping of the
thermal boundary layer into the turbulent part detracts in no way from
the validity of the relation between heat transfer and shesring stress,

.

save for the change in the form of equations (23) and (24) which has no
effect on the present measurements, since the relationship between heat
transfer and shearing stress is to be determined by a calibration measure-

.

ment anyhow.

In the derivation of equation (24), the assumption that-the thermal
boundary layer remains entirely within the lsminar sublayer was supple

a+ << &! which is certainly justifi-mented further by the assumption —
aE2 a~p’

able for greater ~, while, for very small values of ~ quite near the
fommd ewe of the e~ment, ~ is no longer negligible with respect

—
—

ag
to &e

——
%But an iteration, in which — is replaced-by the value from

bn2 aE2 .
Leveqdefs solution as first approximation, indicates readily that
substantial variations in heat transfer occu& only for ~ values less
than 5. So, when % is considerably greater than 5, as is the case for

A plays rio “ ‘air flows with the usual. velocities, the omission of term
a~2 -. +
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f
*.’ essential part. Therefore, it is

that in the tests which are to be

13

expected, according to equation (24),
made in air, the third root of the

shearing stress is approximately proportional-to the coefficient of heat
transfer. Obviously, for very small 7 values, where the omission of

term $ is no longerpermissible, the relationship between heat

transfer and shearing stress

iv. DESCRIFT!ION

Figure 3 represents the

remains unique.

OF SHEARING STRESS INSTRUMENT

instrument for measuring the shearing stress,
which has proved very practical in the shearing measurements in air,
described in section V. The construction and mode of operation is
explained by way of this drawing. A steel ring Dis fitted and screwed
tight into the ~mooth wall C on which the shearing stress of the air
streaming past is to be measured. It is essential that D insure the
best possible heat conduction with the wall C (large contact area), in
order that the heat passing from the measuring instrument to the wall
as a result of imperfect heat insulation, does not heat up ring D. The
measuring element is fitted into the hole of ring D as closely as possible
and held by a hard rubber lock nut F. To obviate the use of an instru–
ment for each test station, dunmy plugs may be used. Naturally, all
pieces must be fitted flush so as to leave no edges at the joints which
might disturb the boundary-layer profile of the flow.

The instrument itself consists of a brass casing B in whose hole
the 2- by 9- by b copper block A is mounted. The block is held by a
celluloid diaphragm E of about l/l&?mn thickness cemented on the 2— by
X surface, which is cemented over the opening of the casing as
smoothly as possible. A pressur+equalizing hole H in the wall of the
housing prevents the diaphragm from bulging during a pressure difference
between inner and outer space. A thread 1/10 mm deep, cut in the cas-
ing B at the seat of the diaphra~, insures a very smooth surface. This
method of mounting the block A provides adequate heat insulation relative
to housing B, because with the small dimensions of the hole in the cas-
ing B, for which the convection produces no essentisl contribution to the
heat transfer, the air forms an excellent heat insulator, and the dia–
phra~ itself, being of little thickness and low conductivity, transfers
no great volume of heat to the casing A. The heat transfer from block A
to the air, on the other hand, is little affected by the celluloid dia– ‘
phragn because it is thin. Block A also csrries a little electric heater
of about 0.13 watt. In addition, the temperature of the block can be
measured by a thermocouple whose junction is located near the heat-
transferring surface. The four wires of about l/10+mn gage pass
insulated through the bottom of the casing A. Back of the bottom, the

.
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wires have a greater cross section. The wires pass through the hard
rubber cap A to keep the casing B from being heated by the heat of the
operator’s hand when changing the instrument. An indicator K and dial L
marked off in degrees above ring A complete the setup. This way the
direction by which the block A is fitted can be read from the outside.

‘/----

v. MODE OF SHEARINGSTRESS MEASUREMENT AND DETERMINATION

OF THE CALIBRATION CURVE

According to iSectio IIIJ a definite relationship exists between

(J

73
-

~=~andi= ‘2TW when the Prandtl number Pr is given. It
pa

was also indicated that the exact form of the relationship for the —
present instrument was to be determined by a calibratiofimeasurement.
‘Thefirst problem consists in finding how the quantities ti and ~u
can be measured with the instrument. It calls for the measurement of

—

the heat volume Q transferred from the intrument A in unit the and the
temperature difference (Tw -T@). The heat volume Q is readily meas–

ured by applying a certain electric voltage, and with it also heat input
at block A, and waiting until the steady state is reached; for the :
amount of heat transfer must be equal to the input, which is readily
measured. The temperature difference Tw –

( T‘=) is best determined by

using a second instrument, which is installed in the same wall, as cold
junction of the thermocouple when the heating is turned off. The

(appearing thermocouple voltage, which is proportional to Tw - Tin),is

measured with a potentiometer or a sensitive ammeter. In the second
m

case, the voltage drop’due to the finite resistance of the lead-in wires
must he taken into consideration as a rule.

( )
From Q and Tw –Tm

the value of = and Ku can then be computed.

However, it is to be noted that the amount of heat given off by the
block A consists of two portions, the heat volume transferred direct
from the block to the flowing medium and that transferred to the wall C
as a result o~ the imperfect heat insulation of the block A. The deter-
mination of a and mu just indicated, comprises both po~tions, while
the theoretical considerations of Section III refer only to the first
portion. However, since the second depends only on the intrument itself
and is unaffected by the transmitted shearing stress, it merely results
in a parallel displacement of the calibration curve.

To provide a known shearing stress for the calibration measurement,
the instrument to be calibrated was installed in the rectangular test
length described by Schultz#&unow (reference 1) in a flat sheet steel
wall, 6 meters in length and 1.4 meters wide. The opposite, movable .-
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- d’ wall was set for constant pressure over the entire test length. A
boundary layer, like on an-infinitely thin flat plate in p&llel flow,
forms then at the wall. The friction coefficients, and hence the shea~
ing stresses, have tieady been computed by various writers (references 1,
7, 8, and9) by various methods and are therefore fairly accurately
known. The present calibration tests were based on the Schultz+runow
test data, since they had been secured,in the same test length by direct
force measurements, and so any defects in the experimental setup do not
involve the calibration measurements. Now, according to the arguments
in Section III, the assumption of a fixed Prandtl number makes N= a
single-valued function of i, but the derivation was made on the assump-
tion that the temperature rise (Tw–T@) is so small that the material

constants within the thermal boundary layer still can be regarded as

(constant. For instrumental reasons, Tw – T.) cannot be made so small

that this assumption is rigorously correct. For this reason, the rela–
tionship between ~u and ~ is somewhat different, depending upon what
temperature difference (Tw–Tm) is chosen. Aside from that, it_also
depends somewhat on whether or not the dimensionless quantities Nu and
T are formed with the material constant corresponding to T!m or Tw.

This difficulty is overcome by stipulating that the material constants
corresponding to T@ he made dimensionless, and also that the same
temperature difference (Tw–Tm) always be used. The second require–

ment is replaced, for reasons of measuring technique, by the stipulation
that the operation always be carried out with the same ~eat input. This
also ensures a definite relationship between ~u and Z. The adjustment
of the fixed heat input is much more convenient than the adjustment of
the fixed temperature Tw, where it is necessary to await the S1OW1Y
approaching steady state first before an adjustment can be made. As

#3
calibration curve, is then plotted as abscissa-against Ru as
ordinate. On the assumption that the thermal boundary Iayer does not
extend appreciably beyond the laminar sublayer, the calibration curve
is, according to equation (23), approximately a straight line, which,
however,‘does not pass through the origin of the coordinate because of
the smount of heat passing through the imperfect heat insulation onto
the wall. Figure 4 represents the calibration curve for this instrument.
It shows the approximat~ly rectilinear variation of the calibration curve
over a wide ~ range (Z range equivalent to a shearing-stress range of
about 1:223). The curvature is largely attributable to the presence of
the celluloid diaphragm between the surface of the copper block and the
flowing air. Measurements with other instruments fitted with glass
diaphragm (greater heat conduction) exhibited much straighter cali–
bration curves, but poorer heat insulation relative to the casing.
The straight line anticipated by equation (23) is shown as a gashed
line. The variation of the shearing stress and of quantity Z was
effected once by varying the
position of the instrument.

flow velocity and then by shifting the
The instrument was first mounted 1.78 meters

.
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from the front edge of the wall, then 5.28 meters from the front t*--

edge. In both cases the total speed range was covered. The points of-
both test series are seen to be in good agreement. The slight system-
atic difference is not necessarily attributable to the instrument, since
it is not greater than the measuring accuracy of the Schultz-Grunow
measurements used as basis of the calculation. According to the theo-
retical considerations in Section III, it was possible to carry out the
calibration measurements with a different flowing medium also as long
,asthe F?randtlnumber was the”same in both cases. When the imperfect
heat insulation of the block A is taken into account, this is no longer
possible as is readily apparent from the following reasoning:

When quantity 7 is given, the Nusselt number corresponding to
..

the direct heat transfer onto the flowing medium is fixed, but the ,.

Nusselt number corresponding to the direct heat transfer onto the wall
is somewhat different for various flowing mediums, since not all of the
heat flows through the casing into the chamber, but a part passes directly
through the celluloid diaphragm and through the heating and thermocouple
wires. For this reason, the calibration and the principal measurements
are carried out as much as possible on the same medium and at the s=
temperature, since the different temperatures correspond to different
material constants of the medium, and hence the effect is the same.
However, this temperature effect is quite small so that temperature
fluctuations of *5° C kve no measurable effect. In measurements at
greater temperature fluctuations, the relation of calibration curve and
temperature must be determined separately.

VI. DIRECTIONAL SENSITIVITY OF TBE

MEASUREMENT OF THE DIRIKYTIONOF THE

INSTRUMENT AND .

SHEARING STRESS
,

The shearing stress transmittedby the flowing medium on the wall
is a ve&torial quantity; hence its exact identification is predicated
upon knowing its absolute magnitude and direction. In”many cases, the
direction is automatically given by the direction of the flow outside
the boundary layer, that is, when no press~e gradient.~rpendicular to
the direction of flow exists, because then a two-dimensional flow is
formed in the boundary layer. In such cases, only the magnitude of the
shearing stress is of interest. The instrument is then mounted in such
a way that the narrow side of the surface of the block is parallel to
the direction of the shearing stress. In this case, it is desirable
that the instrument have a low directional sensitivity in order that
minor angular errors during mounting of the instrument do not result in
erroneous measurements. In figurr 5, the measured ~u divided by the .
Nusselt number at angle Q = o} N~o, iS plotted against the angle g
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-.71 (angle between shearing stress
surface of block A). The more

and direction of the narrow side of the
than satisfactory directional sensitivity

of the probe is readily apparent. Up to angles-of t15°, there is no -
error at all, and even at greater angles it is very small.

But frequently there are also flows with pressure gradient at
right angles to the flow. In that case, the flow within the boundary
layer @s a different direction at different wall distances. The
direction of the shearing stress is then determinedly thL?direction of
the flow in the immediate proximity of the wall. This is a case where
the direction of the shearing stress is not given to begin with and must
be ascertained by measurement. The same instrument canbe used, but it
is mounted in such a way that the direction of the shearing stress is
approximately parallel to the long side of the swface of block A. A
heat–transfer measurement gives the directional dependence of the
Nusselt number represented in figure 6; it shows a distinct minimum
when the shearing stress is parallel to the long side of block A. A
few measurements at three or four points on either side of the minimum
give this minimum, and with it the direction of the shearing stress,
fairly accurately.

Translated by J. Vanier
National Advisory Committee
for Aeronautics

.
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Figure 2.- Temperature profileofthermal boundary layerforthecase of
thermal lxxndary layercontainedentirelywitti-the-laminarsublayer
(accordingtoequation(22));5W definedas thicknessofthermal
boundexylayer.
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